TIME STEP ISSUES IN IGSM2

IGSM2 User's Group Meeting

September 5, 2003

Can Dogrul
California Department of Water Resources

Time Step Issues in IGSM2:

- Extended run times when calibrating with a daily time step
- Monthly data (e.g. ET) is not consistent with daily data (e.g. precipitation) when divided by 30
- Difficult to analyze the simulation results when output is given for simulation days (stream flow at day 12345???) instead of corresponding date/time

Simulation Time Step

General Mass Balance Equation:

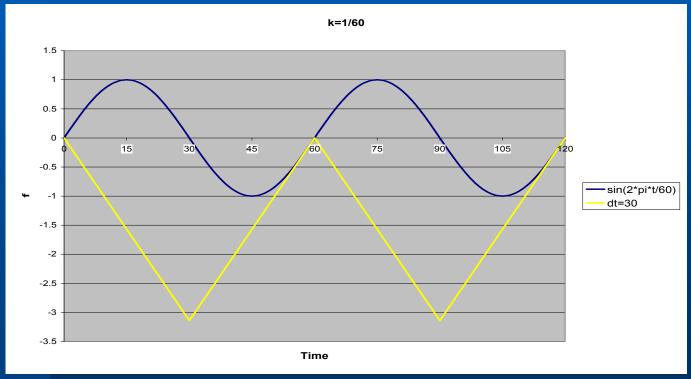
$$\frac{\Delta S}{\Delta t}$$
=In-Out

- ► IGSM2 takes ∆t as 1.0 but it does not know what it really represents (hour, day, month?)
- User is guided to convert the units of time into day through conversion factors in input data files
- In output files the value 1.0 for ∆t is "tagged" with the unit "day"

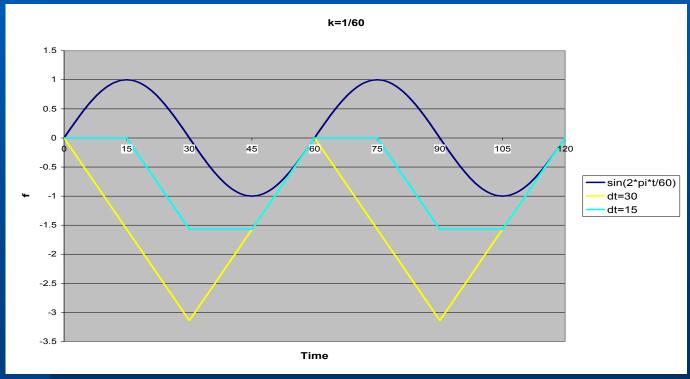

Questions:

- Can any unit for ∆t be used freely?
- Can one calibrate IGSM2 with a particular ∆t and perform projection runs with another ∆t?

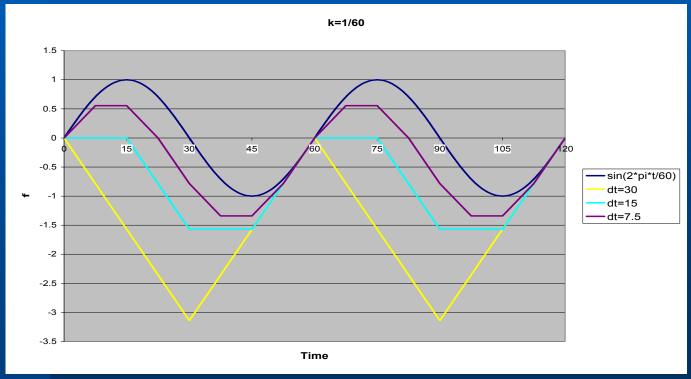
$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$


- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$


- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

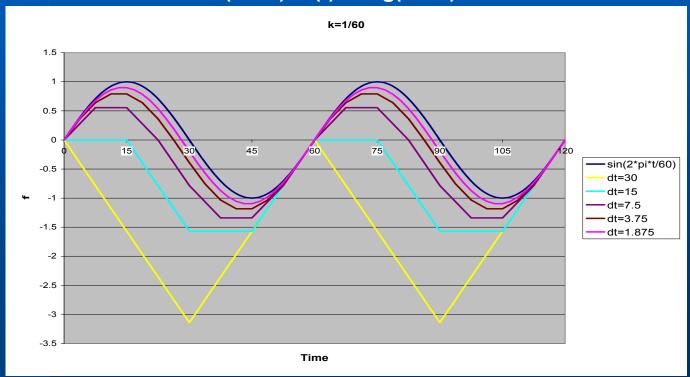
$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$


- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

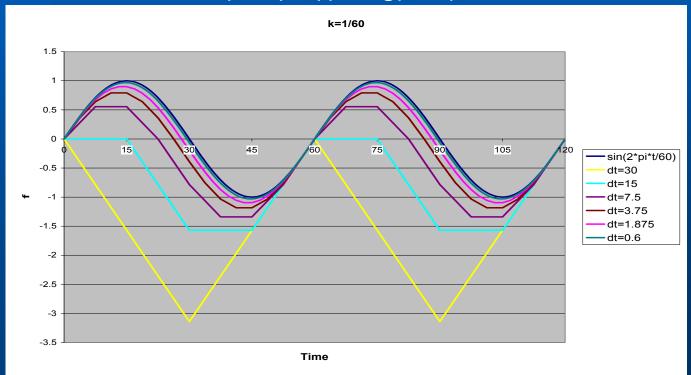
$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$

- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

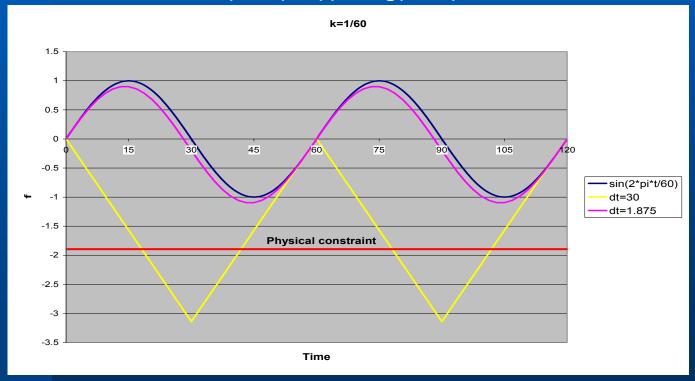
$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$


- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

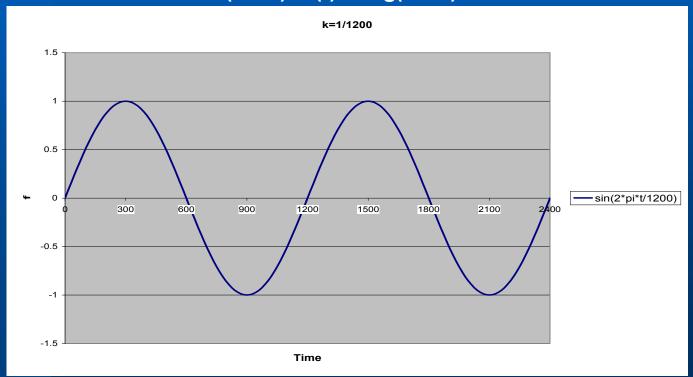
$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$


- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

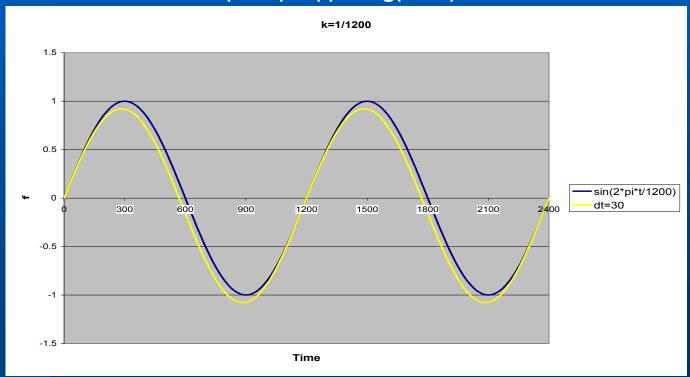
$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$


- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$


- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$


- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

$$\frac{df}{dt} = g(t) ; f(0) = 0 \text{ where } g(t) = 2\pi k \cos(2\pi kt)$$

- * Analytical solution: $f(t) = \sin(2\pi kt)$
- * Numerical solution: $f(t+\Delta t)=f(t)+\Delta t \cdot g(t+\Delta t)$

Comments:

- At should be smaller than the characteristic time scale of the process being simulated
- The model may be calibrated with a ∆t larger than the characteristic time scale of the process, but calibration values might generate erroneous results with a smaller ∆t
- With a too large of ∆t, the numerical results may be stable but constraints due to the physical nature of the process may create instabilities when coupled with these "physically meaningless" numerical results

Time Step Issues in IGSM2 (from 1st slide):

- CONCERN: Monthly data (e.g. ET) is not consistent with daily data (e.g. precipitation) when divided by 30
 - ▶ IGSM2 does not assume a month is 30 days, a year is 360 days, etc. It is up to the user (through NSP_ and NFQ_ variables in data files) to choose the distribution factor in order to distribute data uniformly over smaller time periods (e.g. monthly data into daily data)
 - User is free to generate his/her own daily data (using actual number of days in each month) outside IGSM2 and use this data directly without any manipulation by IGSM2

Time Step Issues in IGSM2 (from 1st slide):

- CONCERN: Difficult to analyze the simulation results when output is given for simulation days (stream flow at day 23456???) instead of corresponding date/time
 - This is a database issue and can be handled by pre and post processors instead of modifying IGSM2 engine

Issues on Data Input and Output of Results

• Examples of available data sets (from CVGSM):

- > ET (monthly; specified for 12 months; same monthly values are used for the entire simulation period; October data is listed first)
- Precipitation (monthly b/w Jan. 1922 Dec. 1945, daily b/w Jan. 1 1946 – present; occasional missing data due to gage malfunction)
- Crop acreages (annual; values are updated on October 1 of every year)

Simulation requirements:

- $\rightarrow \Delta t = 1 day$
- Simulation period = January 1, 1922 December 31, 1998
- Cumulative / instantaneous output of simulation results at the end of each month

Issues on Data Input (based on previous example)

- Filling in the missing data in precipitation file
- Conversion of monthly precipitation and monthly ET data to daily data (considering actual number of days in each month, leap years, etc.)
- Arrangement of crop acreage data so that it can be used with a daily simulation
- Arrangement of newly generated daily ET and precipitation data, and annual crop acreage data so that the first data value in each data set corresponds to January 1, 1922

Issues on Output of Results (based on previous example)

- Association of simulation time step with the actual date/time in simulation period
- Based on the time step-date association above, output instantaneous simulation results at the end of each month (i.e. on Jan. 31, 1922; Feb. 28(29), 1922; Mar. 31, 1922, etc.)
- Based on the time step-date association above, aggregate the simulation results and output the monthly cumulative values

Thoughts on Addressing the Issues of Data Input and Output

- Use a database system designed for the storage and handling of time series data (e.g. HEC-DSS)
- Develop pre and post processor utility programs to handle data input, conversion and manipulation
- At this stage develop algorithms for pre and post processors to use 1 hour, 1 day, 1 month or 1 year for possible data input and output time step
- On input, supply simple algorithms to distribute data over smaller time step (e.g. uniform distribution of monthly data to daily data), to estimate missing data (e.g. linear interpolation), etc.

Thoughts on Addressing the Issues of Data Input and Output (continued)

- On output, allow the user only to aggregate simulation results (hourly to daily, hourly to monthly, daily to monthly, etc.)
- Continue to support data input and output options based on simulation time step (opposed to matching date/time) to allow independent and adventurous user to utilize a variety of time steps
- Avoid excessive modifications to IGSM2 engine itself to perform data input and output (i.e. keep IGSM2 as general as possible)
- Work with the users and urge them for their input in order to develop a practical data input/output system

